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Estimation of Survival Funetion and Failure Ratg

Jammaramanara S. Rao and R. C. TiwaRrr*

University of California, Santa Barbara

Summary. The Bavesian estimation of the survival function and failure rate in the un-
censored case has been treated in ProscHAN and SiNgPURWALLA [5]. In this paper the
extension of estimation to randomly censored data is considered. The time interval is
partitioned into fixed class intervals. Assuming constant failure rate on these intervals
and using a DrIcHLET distribution as the prior, the resulting estimates of survival function
and failure rate have nice and simple forms. If instead of the fixed time intervals, one uses

ol < + ;

the “natural” intervals formed by the observed failure times, this gives essentially the
same result as in FERGUSON and PEADIA [3], SUsARLA and van RyzIN [7], but in a much
simpler form. In this situation the limiting estimates are the KarraN-MEIER analog for

+ha digoavrata T4 T o +ho T A a or e wrady e e o | o < vy o
the discrete situation (uu'b the Karrnax-MEIER PxO\.}LlCt limit estimator (}LAFLAN' and

Me1ER [4]).

Key words: Bavesian inference, DIRICHLET distribution, survival function, failure rate.

1. Introduetion

Let 7' be a nonnegative random variable representing the failure time, with the
distribution function F. The survival function F is given by
Ft)=P (T=t)=1-F (t-0)
and the failure rate is given by
A(t):}li_{ré% P(t=T<t+h| T=t),
if the limit exists. If F is continuous with the density function f, then
12)

NFFAY *
\eJ]

At) =

Notice in the literature A(¢) is also called the hazard rate, force of mortality, and
intensity rate. For a reference to the origin of these definitions see BARLOW and
Proscuaw [1].

Given a continuous failure time distribution F, consider a partition {(¢; P s
of (0,50) with ¢,=0 and ¢, ., =. Consider a set of IV individuals. We take observa-
tions at the k time points ¢,=¢,=...=¢; (say at the end of each hour, day or

* Now at Indian Institute of Technology, Bombay, India.
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similar period, not necessarily of equal lengths) and observe how many individuals

failed and how many were censored (e.g., left the study) in each of these intervals.

Let n; denote the number of failures and m; the number censored in the interval

(¢, t;..1,¢=0,1, ..., k—1. For definiteness, we shall assume that those censored

in the interval (¢, ;] survived past ¢;,,. Without loss of generality, we can and

shall assume that ¢ is sufficiently large that no deatm or censorings occur beyvond

-1

t, so that n,=0 and m,=0. Let Ny, M= Z m; so that N =n+m. Define
k-1 E—t i=o

Ny = 2 n; and mg, = 2 m;. Then N =ng, +my, is the number of individuals at
=1 T

risk :),t time ¢;+0; tiat is, whose failure or censoring time is at least ¢, =

=0,1, .., k-1

For 0 =v=k define

>

i=0

[ii_.‘
= [ dF(@) ‘ . : (1.1)
_ Pi
L= 0 po—pri— o —pi_D)

with ¢,=p,. Clearly, ¢,=1. Holding f(¢) =p,/(t;,, —¢;) constant over the interval
(¢;, t;,], the survival function and failure rate are given by

_ ( (t—13) E
Fio)=\(l-py—.—pi)) — = o (1.2)
L Ui —2y) = )
(t—25) } -1 :
{' (s +1—17) % jg (1-¢)
At = Ll ti<t=t,,, i=01,.. k. (1.3)

{Gip1—t) = (t—t:) q:}
Our problem is to estimate the survival function F(¢) and the failure rate i(f)

defined in (1.2) and (1.3) respectively using the data on n ={ni}§‘;0‘ and m =

={m}¥>y. We will denote this data by d.

2. Bayes estimation of survival function and failure rate

A Bayesian considers q={g;}5_, as a random vector and represents his/her
opinion about g by a probability distribution, called a prior distribution, or
simply, a prior. After observing the failure data d = (n, 1), his/her opinion about
q, given the data d, is called the posterior distribution. Let g be the prror density
function of q. The posterior density function of ¢ given d, namely ¢(q | d), is
given by the relation

9(q | d)xg(q) L(q | d), (2.1)

where L(q | d) is the likelihood function of ¢ at the point d, and the constant
of proportionality which does not depend on q is {fL(q | d) g(q) dq}~ ..
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One usually employs a prior within a family &' of distributions, which is large
enough to accommodate various shades of opinion about the parameter q.
Further, if y£G is a prior for g, then the posterior g(g | d) ought to be in a simple
computable form. If g(q | d)€G for all g€G and for all data d, then & is called
a conjugate family of priors' '

Observing that there is one-to-one correspondence between p={p;}"_ and

Fa L

q ={¢;};=, we define a f‘ommrafp family of priors for p as follows. Let « { % tieg
be a sequence of finite non-negative numbers. We say the random vector p has
a k-dimensional DIrIcHLET distribution with parameter a, and denote it by
P ~D(a), if the distribution of (pg, Py, ..., Pr—q) I8 Dixg, @y, ..., a4 _y; %) as defined
in WILgs [8], Section 7.7.
Under the prior D(a) for p the coordinates of random vector ¢ are independent,
with ¢; having a Beta distribution with parameters «; and «;.;, denoted by
E
Beta (a;, 41y, where o = _)__7 w;, © =0,1,..., k—1. After observing the data ¢ the
i=i
likelihood function of ¢ at the peint d is

k— . .
- y ;o
Ligldy=]] ' (1=py—pi—...—p))
=0

k-1
=[] ¢ (1—g)"*O""O
2 2

i=0
Using (2.1) and (2.2) the posterior distribution of g given the data d is given by
the relation

g(q | d) H q%+"z _q.)“(i+1)+”‘(i+1)+m(i)‘1' (2.3)

1=0 i
The BaYEs estimate of ¢; under prior D(a) (with respect to the squared error
loss function) based on no sample, called the prior BAYES estimate of_ q;, 18
40 e % . :
i = Ep(q) = —> (2.4)
q Res D(a) q ) )
and based on the data d is
a;+ny %ty

AN =E —
Y o= d)= =
Qz,ct .D(oz)(Qz , ) %) +nG +m(i) % +1V(i) »

Clearly, from (2.4) and (2.5) we have
Gla=widla+ (1 —w) &y, (2.6).
where ;= /(a+N). Thus ¢, is a weighted mean of the prior Baves
estimate §j, and the empirical estimate 1;=n;/N, with weights w; and (1 —w;)
respectively. Substituting g‘ga and q‘f:’; in equations (1.2) and (1.3), the Bay=ss
estimates of # and 1 for no sample size and with the data d are respectively
2 ([ (b=t oy i o)
F"t:{l_ —~—} (1———)
«(f) (tir1—1) @) ;g %)
= (t—1t;) o +ng } 1_1( & +nj
(ti+1—1) oy + NG 2 + N

(2.7)

) y h<t=tigg,
=0
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%
(41— ) aqy— (F— ) ag}
22 +n,
C{(tie 1 — ) (2 + Nip) — (E— ) (e +m)}

3. Limiting Bayes estimates

It appears that «;,, the sum of the parameters «, and «,,, of the distribution
Beta (x;, o, ) of ¢;, enters into the expressions (2.4) and (2.5) as the ‘prior
sample size.” This has given rise to the general feeling that allowing «; to become
small not only makes the ‘prior sample size’ small but also it corresponds to no
prior information (see, for example, FERGUSON [2], in the context of DIRICHLET
processes). By investigating the limit of the BavEs estimate of ¢; when o, is
allowed to converge to zero, we show below that it is misleading to think of «
as the prior sample size and the smallness of o, as having no information. (This
result is discussed in SETHURAMAN and TIwagrrI [6] in the context of DIRICHLET
processes. )

Consider the convergent sequences of non-negative numbers a={a]}¥_,,
r=0,1,2, ... If « —»cc;? as r —oo, then q—"ﬁ”-;qo, where for each r, ¢"={q;} is defined

in (1.1) and — represents convergence in distribution, and

—
[
Nw)

~

0 0

qi,a" _’qi‘qO

N N .

q;a,-qiao , 1=0,1,.., k-1,
as r—oo. Further, if we let «(, converge to zero such that «j/«f;, converges to
a constant ¢#;, 0 <¥;<1, then in the limit as r tends to infinity ¢} is the Binomial
(1, #;) random variable; and

v M 2.10
liwr = Ng _ (2.10)
which is the empirical estimate 4,,7=0, 1, ..., k—1. Also, F’g, (which is as defined

in (2.7) with « replaced by o) in the limit is the empirical estimate

2 (t—ti) n; il 2
P -‘—‘{1——————— ~———} (1——-—-—),
© (Fs41—1;) N H Ny

7=0
ti<t§ti+1’ 7;=O, 1,...,]0—‘1 .

(2.11)

Let {t;}f_, denote the distinct observed failure times, again with #,=0 and
ty 41 =o°. Let n; denote the number of failures at ¢,,,, =0, 1, ..., k—1, and let
M Ny, My and N, remain as before. We wish to partition the time-interval
using these fs,7=1, 2, ..., k, as before. This procedure is clearly justified when
T is a discrete random variable and {£;}¥_, is its support so that failures occur
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only at these points. On the other hand, one may look at the case of continuous
failure times as being approximated by a discrete situation like this where, because
of observational restrictions, one observes the process at #,_;, and makes the
approximation that the n; failures in the interval actually occurred at ¢, , instead
of over the period (¢, ¢,.,],7=0, 1, ..., k—1. This is analogous to the assumptions
one makes in computing statistics like the mean and variance from continuous
data that has been grouped into class intervals. It should be remarked that the
procedure used by Susarra and vaN RyzIN [7] amounts implicitly to such a par-
titioning of the timeinterval using the distinct observed failure times and using
it to find the censoring numbers (cf. their section 3). In this case, the survival
function and the failure rate are given by (cf. equations (1.2) and (1.3))
2
Fiy=J] (1—qp), ti<t=t.., (2.12)
7=0

and }

. g at t=t,
"0, ti<t<ti,

Also, the Baves estimates of F and 1 are given by {c¢f. equations (2.7) and (2.8))

AN T _ﬂ: ) ) 214
Fc( (t)~7]=:07 {1 Oc(7_)_‘_2\7(7_) ’ tt<t§tz+l ’ (d-l'L)
and
{ &+

o 2 __ 2
at [=i;4

iy =lag +Ng U i=0,1, ..., k—1. (2.15)
10, ti<t<tiyy

Now an equation similar to (2.6) holds with 4; replaced by the KaPran-METER

estimate Agy(f)= I% at t=t;,,. (Note that this not the usual KaPrLaAN-MEIER
(©) .
product limit estimate at f=¢#;,,). Again, if «;, —0 and ﬁ—»z?.;, 0<®;<1, in the
()
sense discussed above, then the estimates (2.14) and (2.15) converge to

2 : n;
Fxﬂl(t)=n{1~le)} y ti<t§ti+1 5 (2.16)
=0 j
and
Mat t=t
a =
Agu(®) ={N =01, ., k1 (2.17)
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